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The most general form for symmetric modes of nonlinear discrete-symmetry systems with nonlinearity
depending on the modulus of the field is presented. Vortex solutions are demonstrated to behave as Bloch
modes characterized by an angular Bloch momentum associated to a periodic variable, periodicity being fixed
by the order of discrete point-symmetry of the system. The concept of angular Bloch momentum is thus
introduced to generalize the usual definition of angular momentum to cases where O�2� symmetry no longer
holds. The conservation of angular Bloch momentum during propagation is demonstrated.

DOI: 10.1103/PhysRevE.72.036612 PACS number�s�: 42.65.Tg, 42.70.Qs, 03.75.Lm

I. INTRODUCTION

Rotational symmetry in the x-y plane, defined by the
O�2�-symmetry group, implies the conservation of the
z-component of angular momentum in two-dimensional non-
linear systems. If the O�2� continuous symmetry is substi-
tuted by a discrete rotational symmetry, the usual approach
based on Noether’s theorem fails since infinitesimal symme-
try transformations are no longer allowed. Conservation of
angular momentum is expected to breakdown in its usual
form and, consequently, nonlinear dynamics should show
special features as compared to the O�2�-symmetric case.
Since angular momentum is expected to realize differently in
discrete-symmetry systems, it is particularly interesting to
compare the different behavior of O�2�-symmetric and
discrete-symmetry vortices �for an extensive review on vor-
tex solitons and optical vortices see �1� and references
therein�.

A general feature of vortex solutions is their characteristic
phase dislocation, which is determined by an integer number
that will be referred to as vorticity �also known as winding-
number, “topological charge,” or spin�. In O�2�-symmetric
systems, rotationally invariant vortices �i.e., vortex solutions
whose amplitude is O�2�-symmetric� are eigenfunctions of
the angular momentum operator with eigenvalue �angular
momentum� given by vorticity. Oppositely, discrete-
symmetry vortices have no well-defined angular momentum.
Examples of both types of vortices can be found in optics as
well as in Bose-Einstein condensate �BEC� systems �1�. Vor-
tex solitons in discrete-symmetry nonlinear systems have
been numerically predicted to exist in two-dimensional �2D�
arrays of coupled waveguides �2�, in 2D periodic dielectric
media with homogeneous Kerr nonlinearities �3,4�, and in
photonic crystal fibers with defects �5�. Optical vortices with
O�2� symmetry have been experimentally observed in homo-
geneous self-defocusing nonlinear Kerr media �6� whereas
discrete-symmetry optical vortices have been observed in op-
tically induced square photonic lattices �7,8�. The technique

of optical lattice induction for generating 2D periodic square
lattice structures in the former papers and reported in �9–12�
also provides a suitable scenario for creation of alternative
tunable refractive index profiles with different types of non-
diffracting beams. This includes the possibility of creating
Bessel beams induced lattices �13,14� �they can be generated,
for example, with holographic methods �15–17�� in which
azimuthally modulated lattices of any desired order of dis-
crete rotational symmetry can be produced by higher-order
Bessel beams �18�. In this way, the experimental proposals of
dielectric structures possessing discrete rotational symmetry
of different orders are opening a wide variety of physical
systems in which properties of discrete-symmetry optical
vortices can be suitably analyzed.

The influence of discrete symmetry in the features of op-
tical vortices are strongly reflected in their angular proper-
ties. The phase of a discrete-symmetry vortex presents, be-
sides the typical linear angular dependence characteristic of
O�2�-symmetric vortices, an additional sinusoidal contribu-
tion completely fixed by the order of the discrete-symmetry
of the system �the so-called group phase� �5�. Besides, these
systems exhibit a vorticity cutoff equally determined by the
order of the discrete-symmetry, in such a way that no vorti-
ces of arbitrary order are permitted �19–21�.

The aim of this paper is twofold. On the one hand, I will
propose a new approach to the search for vortex solutions of
a general nonlinear equation that describes not only the con-
ventional optical and BEC cases but also more general situ-
ations. I will prove a general expression for symmetric vor-
tex solutions by showing that they are angular Bloch modes.
On the second hand, I will extend the conservation of angu-
lar momentum to the discrete-symmetry case by introducing
the concept of angular Bloch momentum and by demonstrat-
ing its conservation during propagation.

II. ANGULAR BLOCH MODES

Let us consider the 2D nonlinear eigenvalue equation for
a system possessing discrete point-symmetry of the Cn type
�discrete rotations of order n�:

�L0 + LNL������� = − E� , �1�

where L0 stands for the field-independent part of the full
differential operator �linear part� and LNL����� for the nonlin-
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ear part. There is no restriction about the specific form of L0
and LNL. Usually, L0 depends on the transverse position co-
ordinates through gradient operators and explicit functions of
position �a typical example is L0=�2−V0�x ,y��. The only
assumption made is that the nonlinear part LNL depends on
the field through its modulus exclusively. There can be also
an explicit dependence on coordinates through other func-
tions �e.g., inhomogeneous nonlinear coefficients: LNL
=�2�x ,y����2+�4�x ,y����4�. It is considered that the system
is invariant under discrete rotations Cn, so that all operators
and coefficients defining L0 and LNL are assumed to be in-
variant under discrete rotations of nth order. If one is inter-
ested in symmetric solutions, i.e., those functions verifying
that their modulus is a Cn-invariant ����r ,�+2� /n��
= ���r ,����, then the entire operator L=L0+LNL becomes in-
variant under discrete rotations: L�r ,��=L�r ,�+��, �
�2� /n. One can transform this angular dependence into a
dependence on a length variable—defined within an interval
of the real axis—by using the mapping �→s=�D /2�. This
mapping maps the unit circle S1 �where � is defined: �
� �−� ,��� onto the real axis interval �−D /2 ,D , /2� �see Fig.
1�. In terms of the new length variable s, invariance under
discrete rotations of the L-operator becomes a periodicity

property: if L̃�r ,s��L�r ,2�s /D� then L̃�r ,s+a�= L̃�r ,s�
where a is the period in the noncompact variable s. Accord-
ing to the previous mapping, the period a is fixed by the
discrete-rotation angle � and thus it depends on the order of
the discrete symmetry: a=�D /2�=D /n. In this way, Eq. �1�
for symmetric functions is transformed into L̃�r ,s���r ,s�
=−E��r ,s� where ��r ,s����r ,2�s /D�. One has thus con-
verted the original discrete-symmetry eigenvalue problem
into a problem of finding the self-consistent modes of a pe-
riodic operator. The modulus of these modes are invariant
under periodic translations ����r ,s+a��= ���r ,s���, a conse-
quence of the invariance of the modulus of a symmetric so-
lution under discrete-rotations. As a clarifying example, one

can consider a standard operator of the type L̃�r ,s�=�2

−V�r ,s�, where V�r ,s�=V0�r ,s�+VNL����r ,s���. If ��r ,s� is a

solution of L̃�=−E� with periodic modulus then it has to be
an eigenmode of the periodic operator generated by itself

L̃�r ,s�=�2−V�r ,s�. According to Bloch’s theorem, since V
is periodic V�r ,s+a�=V�r ,s� the solution of an eigenvalue
equation of the previous type is given by Bloch modes in the
periodic variable s. This argument equally applies to the gen-

eral periodic operator L̃�r ,s�, so that the most general solu-

tion of L̃�=−E� is given by 1D Bloch modes �22�:
�p��r ,s�=eipsup��r ,s�, where p is the Bloch momentum or
pseudomomentum of the mode and up is the so-called Bloch
function. The index � is known as the band index and occurs
because, at a given value of p, there are many different

eigenmodes of L̃. Since � does not play a role in the current
discussion, I will omit it from the notation �although one has
to recall that it is always present�. The Bloch function is a

periodic function of s with the periodicity of the L̃ operator:
up�r ,s+a�=up�r ,s�.

One can obtain interesting properties of solutions of Eq.
�1� by reinterpreting well-known properties of 1D Bloch
modes. A Bloch mode is characterized by the value of its
Bloch momentum p. However, unlike plane waves, p is not
an eigenvalue of the momentum operator and its value is
constrained to lie in a restricted interval, called the Brillouin
zone, defined by the condition �p��� /a. Moreover, due to
the definition of the length coordinate s in terms of the an-
gular variable �, the �p function has to be additionally peri-
odic in the interval length D �s� �−D /2 ,D /2��, �p�r ,s�
=�p�r ,s+D�. As a consequence, a discretization condition
for the Bloch momentum p is obtained: eipD=1⇒ p= pm
=2�m /D, m�Z. If one reverses the �→s mapping by rein-
troducing the angular variable � in �p�r ,s�=eipsup�r ,s�, one
obtains the solution in its original form:

�m�r,�� = eim�ũm�r,��, m � Z, �m� � n/2. �2�

I shall call these solutions angular Bloch modes. They
constitute the general symmetric solutions of the nonlinear
eigenvalue equation �1�. Because of the angular nature of the
� variable and its relation to the Bloch momentum pm
=2�m /D, the index m will be referred to as the angular
Bloch momentum �or pseudo angular-momentum� of the an-
gular Bloch mode. The restriction on the permitted values of
the angular Bloch momentum m is a consequence of the
Brillouin zone limitation. The existence of the Brillouin zone
for the Bloch momentum p establishes a condition for its
permitted values: �p��� /a. Since p is discretized according
to pm=2�m /D, m�Z, the Brillouin zone limitation effec-
tively imposes a strict constraint into the angular Bloch mo-
mentum �m��D /2a. Inasmuch as the period a is determined
by the order of symmetry n�a=D /n�, one finds that the
modulus of the angular Bloch momentum presents the upper
bound �m��n /2 occurring in Eq. �2�.

The expression �2� is the same one that it is obtained
for vortex solutions in a nonlinear system with point-
symmetry Cn using group theory arguments �5,19,21�:
�l̄�r ,��=eil̄��0

�l̄��r ,��, l̄�Z being the index of the group rep-

resentation where the solution belongs to and �0
�l̄� a discrete-

rotation invariant function, �0
�l̄��r ,�+2� /n�=�0

�l̄��r ,��. The

FIG. 1. �a� Mapping of the angular variable � into the noncom-
pact coordinate s. �b� Equivalent periodic potential using this map-

ping �for an operator of the type L̃�s�=�2−V�s�� corresponding to a
system with point-symmetry of order n=6.
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invariant function �0
�l̄� predicted by group theory is nothing

but the Bloch function ũm of the angular Bloch mode �2�.
Vorticity equals the index of the representation, so that �l̄

represents a vortex with vorticity v= l̄ �the exception is the

l̄=n /2—even n—solution� �19�. The comparison of �l̄�r ,��

=eil̄��0
�l̄��r ,�� and Eq. �2� yields to interesting equivalences.

Vortex solitons of vorticity v= l̄ appear now as angular Bloch

modes carrying angular Bloch momentum m=v= l̄ �
m=n /2—even n—excluded�. The restriction on angular
Bloch momentum �m��n /2, along with the previously estab-
lished relation between vorticity and angular Bloch momen-
tum, fixes a cutoff for the vorticity: �v��n /2 �v=n /2—even
n—excluded�. This condition can be also rephrased as

�v� 	 n/2 �even n� and �v� � �n − 1�/2 �odd n� . �3�

The explicit distinction between even and odd orders is made
to remark the different behavior existent in the corresponding
Brillouin zones in both cases. For odd n, the discretized
Bloch momentum pm can never achieve the zone limit �pm�
	� /a, whereas this is certainly possible for even n. This can
be clearly visualized in Fig. 2, where two examples of Bril-
louin zones for even and odd n are shown. It is remarkable
that the vorticity cutoff expressed in Eq. �3� has been ob-
tained in a completely different mathematical framework us-
ing group-theory arguments �19–21�.

III. CONSERVATION OF ANGULAR BLOCH MOMENTUM
AND NONSTATIONARY SOLUTIONS

At this point, it is interesting to compare the discrete-
symmetry situation with that corresponding to continuous
rotational symmetry. In the O�2� case, Noether’s theorem
ensures the conservation of the z-component of the angular
momentum associated to the � field during propagation:

jz = �
R2

dxdy�*�r��r ∧ ��z��r� ⇒
djz�z�

dz
= 0. �4�

This quantity is also the expectation value of the angular
momentum operator Lz=−i� /�� for the � field, i.e., jz
= ���Lz��	. Since O�2�-symmetric vortex solutions are of the

type �l̄�r ,��=eil̄�f l̄�r�, vortex solutions are eigenfunctions of

the angular momentum operator with eigenvalue l̄. There-

fore, jz equals l̄ for �normalized to one� vortex solutions and
both represent the same constant of motion. On the other
hand, the vorticity v of O�2�-symmetric vortices is directly

given by l̄: v= jz= l̄. Thus angular-momentum and vorticity
are equivalent quantities for O�2�-symmetric vortices.

In a discrete-symmetry system the z-component of angu-
lar momentum jz �Eq. �4�� is no longer conserved. Noether’s
theorem does not apply because the symmetry under consid-
eration ceases from being continuous. It is then necessary to
find a different conserved quantity that explicitly manifests
the discrete-symmetry invariance of the system. It will be
proved next that this quantity is nothing but the angular
Bloch momentum. In order to carry out the previous demon-
stration, it is simpler to resort to the representation in terms
of the noncompact variable s. It will be assumed that evolu-
tion is provided by a first-order operator in the evolution
variable z, i.e.,

L̃��r,s,z� = − i
���r,s,z�

�z
. �5�

This type of evolution operator includes Schrödinger-like
equations �like those appearing in nonlinear paraxial evolu-
tion in optical systems or in the evolution of Bose-Einstein
condensates� but also more general evolution equations, as
nonparaxial forward equations in axially invariant optical
systems �23�.

Up to now the concept of angular Bloch momentum has
been closely linked to the concept of angular Bloch modes,
i.e., to stationary solutions satisfying Eq. �1�. These solu-
tions, besides being characterized by an integer angular
Bloch momentum, present a well-defined dependence on the
evolution parameter z given by the eigenvalue E :�m�r ,� ,z�
=eim�ũm�r ,��e−iEz. Nevertheless, angular Bloch momentum
can be attributed to some specific nonstationary solutions as
well. This is so because angular Bloch momentum is related
to the transformation properties of the propagating field un-
der discrete rotations of nth order �Cn group� and these trans-
formations can be always defined not only for a stationary
field but also for an arbitrary field at a given value of the
evolution parameter z=z0 in the following way: ��r ,� ,z0�

→
Cn

��r ,�+2� /n ,z0�. If the arbitrary field � at z0 properly
transforms under discrete rotations so that �m�r ,�
+2� /n ,z0�=eim2�/n�m�r ,� ,z0�, m�Z, then pseudomomen-
tum can be assigned to it in a straigthforward way, using the
same procedure as for stationary solutions, by introducing
the “flattening” mapping �→s=�D /2� as before: �m�r ,s
+a ,z0�=eipma�m�r ,s ,z0� where pm=2�m /D is the pseudo-
momentum �recall that ��r ,s ,z����r ,� ,z��. This property
indicates that the nonstationary field � at z0 is an eigenfunc-
tion of the periodic translation operator Ta since
Ta�m�r ,s ,z0�=�m�r ,s+a ,z0�=eipma�m�r ,s ,z0� thus showing
that it owns a well-defined 1D pseudo-momentum pm asso-
ciated to the noncompact variable s. Consequently, the �in
principle nonstationary� � field at z0 can be written in Bloch
form as �m�r ,s ,z0�=eipmsum�r ,s�z0

and, equivalently, it can
be restated in terms of the angular variable �—after inverting

FIG. 2. Schematic representation of Brillouin zones for two dif-
ferent order of symmetries: �a� even n�n=6� and �b� odd n�n=5�.
Permitted angular Bloch modes are shown.
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the �→s mapping—as �m�r ,� ,z0�=eim�um�r ,��z0
. There-

fore, the field �m at z0 possesses angular Bloch momentum m
using the same criterium established previously for station-
ary solutions. Certainly, stationary solutions appear as a par-
ticular case in which the z dependence of the � field is fixed
by the eigenvalue E so that um�r ,� ,z�= ũm�r ,��e−iEz, this ex-
pression being valid for all values of z and not only for the
fixed one z0. These are the angular Bloch modes I have ref-
ered to in my previous analyses and for which angular Bloch
momentum is trivially conserved.

A different matter is the question of the conservation of
angular Bloch momentum for nonstationary solutions. Even
though it has been shown that it is possible to have nonsta-
tionary solutions with well-defined angular Bloch momen-
tum at a given value of the evolution parameter z=z0, it
remains an open question whether evolution will preserve
angular Bloch momentum for the propagating field when z

z0. My aim now is precisely to analyze the evolution of a
field amplitude whose initial condition �I will choose it at z
=0, for simplicity and without loss of generality� is given by
a nonstationary solution with well-defined pseudomomentum
pm, i.e., �m�r ,s ,0�=eipmsum�r ,s�0 or, equivalently, with well-
defined angular Bloch momentum m, i.e., �m�r ,� ,0�
=eim�um�r ,��0. It is important to stress again that this solu-
tion does not need to be a stationary solution of the vortex
type behaving as an angular Bloch mode and satisfying the
nonlinear eigenvalue Eq. �1�. Consequently, this field ampli-
tude can evolve in z in a more complicated manner than that
corresponding to a stationary solution. Despite it is a known
fact that Bloch momentum is conserved during propagation
in a periodic linear system for Bloch modes it is far from
obvious in the nonlinear case when dealing with nonstation-
ary solutions. In the latter case, even if the initial field can
have well-defined angular Bloch momentum the fact that the
evolution operator explicitly depends on the field itself
makes the question of conservation of angular Bloch mo-
mentum nontrivial.

Let us consider the total evolution from 0 to z as a suc-
cession of infinitesimal evolution steps of length � in the
limit �→0. In a first-order evolution equation of the type
given by Eq. �5�, the infinitesimal evolution of a field ampli-
tude from the axial slice zj to the following slice zj+1=zj +�
is given by

� j+1�r,s� = eiL̃���j���� j�r,s� . �6�

Now I will prove that if �0��0���r ,s ,0�� is an �in prin-
ciple� nonstationary field with well-defined pseudomomen-
tum pm, then � j is also a field with the same pseudomomen-
tum pm for all values of j. The proof is carried out by
induction. Let us start by calculating the pseudomomentum
of the j=1 amplitude �1. The initial amplitude �0 is a func-
tion with well-defined pseudomomentum pm��0=�pm

�r ,s�0

=eipmsupm
�r ,s�0� and thus it is an eigenfunction of the trans-

lation operator Ta :Ta�0�r ,s�=�0�r ,s+a�=eipma�0�r ,s�. The
amplitude ��0� is a periodic function of s with periodicity a
since it is the modulus of the periodic Bloch function
upm

�r ,s� : ��0�r ,s+a��= ��0�r ,s��, so that the nonlineal part of

the L̃ operator is translational invariant, LNL���0�r ,s+a���

=LNL���0�r ,s���. Therefore the full operator L̃ is invariant
under finite translations since both its linear and nonlinear

part are invariant, �L̃���0�� ,Ta�=0. This implies in turn that
the infinitesimal evolution operator in Eq. �6� commutes with

Ta : �eiL̃���0��� ,Ta� =
�→0

�1+ iL̃���0��� ,Ta�=0. Now I apply the Ta

operator onto �1 and take into account Eq. �6� for j=0 to find

Ta�1=eiL̃���0���Ta�0=eipma�1, where I have used the fact that
the evolution and translation operator commute between
them and that �0 is an eigenfunction of Ta. Consequently, �1
is also a function with well-defined pseudomomentum pm.
Now, following the induction procedure, I will assume the
well-defined pseudomomentum property to be true for � j and
I will prove it for � j+1. The demonstration is analogous to the
j=0 case. I assume � j to be a function with well-defined
pseudomomentum pm. Then its modulus is translational

invariant, so L̃��� j�� and eiL̃���j��� are: �L̃��� j�� ,Ta�
= �eiL̃���j��� ,Ta�=0. If one acts with the translation operator Ta

onto � j+1, commutes the translation and evolution operators,
and takes into account that Ta� j =eipma� j �well-defined
pseudomomentum condition for � j�, one readily finds that
Ta� j+1=eipma� j+1. This shows that � j is a function with well-
defined pseudo-momentum pm for all values of j if the initial
amplitude �0 is. Expressed in different words: axial nonlin-
ear evolution preserves the pseudomomentum pm and, con-
sequently, the angular Bloch momentum m.

The continuous limit �→0 of the previous statement per-
mits one to give an expression for the evolving field ampli-
tude ��r ,s ,z�: if ��r ,s ,0�=eipmsupm

�r ,s�0, then it is also true
that ��r ,s ,z�=eipmsupm

�r ,s ,z� for z
0, upm
being a

z-dependent Bloch function. Note that this function does not
need to be of the form corresponding to stationary solutions.
If we reintroduce the angular variable � instead of the non-
compact one s, one obtains that the general expression for
the evolution of an initial field characterized by a well-
defined angular Bloch momentum m in the system under
consideration is

�m�r,�,z� = eim�ũm�r,�,z�, m � Z, �m� � n/2. �7�

This equation establishes that the angular Bloch momen-
tum m is preserved by nonlinear evolution.

It is interesting to remark here the relation between con-
servation of angular Bloch momentum and stability. It has
been well established that weak perturbations �with no well-
defined angular Bloch momentum� can induce instabilities
on vortices in square lattices �24�. The destruction of the
vortex would lead to the nonconservation of the angular
Bloch momentum for unstable vortices. Thus conservation of
angular Bloch momentum becomes very sensitive to small
asymmetric perturbations when one deals with unstable vor-
tices. In the language of group theory, asymmetric
perturbations—characterized by not having well-defined an-
gular Bloch momentum or by having angular Bloch momen-
tum different from that of the vortex solution—are equiva-
lent to nondiagonal perturbations, as defined in Refs. �5,20�.
They are also responsible for instabilites in vortex and nodal
solitons in triangular photonic crystal fibers.
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The interplay between ordinary angular momentum and
angular Bloch momentum can be visualized by calculating
the expectation value of the angular momentum operator for
the field amplitude �7�. One easily finds that jz�z�=m
+ �ũm�Lz�ũm	�z� or

m = jz�z� − �ũm�Lz�ũm	�z� . �8�

This property shows that angular Bloch momentum is
conserved despite angular momentum is not. The expectation
value appearing in Eq. �8� is ju

m�z��
R2ũm
* �−i� /���ũm corre-

sponding to the angular momentum associated to the
�-dependent Bloch functions ũm. The conservation of the an-
gular Bloch momentum is then the result of a subtle balance
between two nonconserved quantities: the conventional an-
gular momentum jz�z� and the angular momentum ju

m�z� re-
lated to Bloch functions. The latter can be attributed to the
presence of the discrete-symmetry system that acts as an an-
gular periodic crystal. The dependence of the ũm Bloch func-
tions on � is a consequence of the angular periodicity of the
system. In order to see it, it is clarifying to consider an
O�2�-invariant medium as the n→� limit of a system with
discrete symmetry of nth order. In such a case, the ũm Bloch
functions become independent of the � angle and, therefore,

their associated angular momentum vanishes ju
m�z� →

n→�

0. As a
consequence, angular momentum becomes angular Bloch

momentum jz�z� →
n→�

m and, therefore, a constant of motion. It
is then reasonable to attribute the angular momentum contri-
bution ju

m�z� to the discrete-symmetry system acting as an
angular periodic crystal. One can interpret Eq. �8� as the
statement that during propagation conventional angular mo-
mentum is transfered to the discrete-symmetry system �the
angular crystal�, and vice versa, in such a way angular Bloch
momentum is conserved: djz�z� /dz=−dju

m�z� /dz.
All the previous arguments apply to every type of evolv-

ing field provided it satisfies the initial condition of having
well-defined angular Bloch momentum. Conservation of an-
gular Bloch momentum appears then as a property which
occurs independently whether the solution is stationary or
not. Nonlinear stationary solutions of Eq. �1� are only par-
ticular cases to which the general conservation law can be
applied to. For discrete-symmetry vortices the angular-
momentum-vorticity equivalence v= jz of O�2�-invariant so-
lutions is lost. Since discrete-symmetry vortices are angular
Bloch modes of vorticity v=m, Eq. �8� establishes a new
relation between vorticity and the angular momentum carried
by the vortex field �as defined in Eq. �4��: v= jz− ju

m. In this

way, the angular Bloch momentum concept permits one to
unveil the role played by angular momentum and vorticity in
systems whose symmetry is no longer O�2� but a point-
symmetry of lesser order.

IV. CONCLUSIONS

The role played by rotational symmetry is important to
classify stationary solutions as well as to determine the dy-
namics of nonstationary ones. In this paper, I have analyzed
the particular consequences that the implementation of rota-
tional symmetry has on these two issues when the system
under consideration enjoys a discrete rotational symmetry of
finite order. Unlike in systems possessing continuous rota-
tional symmetry, the concept of angular momentum has to be
suitably modified in order to incorporate the special features
that the discrete nature of rotational symmetry introduce. The
key point is the concept of angular Bloch momentum that
can be equally applied to both stationary and nonstationary
solutions. This concept relies on the transformation proper-
ties of stationary and nonstationary fields under discrete ro-
tations, which, when properly managed, can be visualized as
translational transformations in a 1D periodic system for the
angular variable. The notion of pseudomomentum associated
to finite translations in this “angular crystal” appears then
naturally, and, in turn, leads to the concept of angular Bloch
momentum in a transparent way. When applied to nonlinear
stationary solutions, angular Bloch momentum has been
shown to be equivalent to the vorticity or topological charge
of discrete-symmetry vortices. This remarkable property per-
mits one to reinterpret vortices in systems with discrete ro-
tational symmetry as angular Bloch modes associated to the
behavior of the system as an “angular crystal.” However, the
angular Bloch momentum concept is not exclusive of sta-
tionary solutions. It can be also attributed to evolving solu-
tions of nonstationary character. As far as this question is
concerned, it has been proven that angular Bloch momentum
is conserved by nonlinear evolution described by equations
of the type �5�.
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